Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1397-1407, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596316

RESUMO

Krabbe disease is a sphingolipidosis characterized by the genetic deficiency of the acid hydrolase ß-galactosylceramidase (GALC). Most of the studies concerning the biological role of GALC performed on Krabbe patients and Galc-deficient twitcher mice (an authentic animal model of the disease) indicate that the pathogenesis of this disorder is the consequence of the accumulation of the neurotoxic GALC substrate ß-galactosylsphingosine (psychosine), ignoring the possibility that this enzyme may exert a wider biological impact. Indeed, limited information is available about the effect of GALC downregulation on the cell lipidome in adult and developing organisms. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model human genetic diseases, including sphingolipidoses, and two GALC co-orthologs have been identified in zebrafish (galca and galcb). Here, we investigated the effect of the competitive and irreversible GALC inhibitor ß-galactose-cyclophellitol (GCP) on the lipid profile of zebrafish embryos. Molecular modelling indicates that GCP can be sequestered in the catalytic site of the enzyme and covalently binds human GALC, and the zebrafish Galca and Galcb proteins in a similar manner. Accordingly, GCP inhibits the ß-galactosylceramide hydrolase activity of zebrafish in vitro and in vivo, leading to significant alterations of the lipidome of zebrafish embryos. These results indicate that the lack of GALC activity deeply affects the lipidome during the early stages of embryonic development, and thereby provide insights into the pathogenesis of Krabbe disease.

2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445731

RESUMO

ß-Galactosylceramidase (GALC) is a lysosomal enzyme involved in sphingolipid metabolism by removing ß-galactosyl moieties from ß-galactosylceramide and ß-galactosylsphingosine. Previous observations have shown that GALC may exert pro-oncogenic functions in melanoma and Galc silencing, leading to decreased oncogenic activity in murine B16 melanoma cells. The tumor-driving BRAF(V600E) mutation is present in approximately 50% of human melanomas and represents a major therapeutic target. However, such mutation is missing in melanoma B16 cells. Thus, to assess the impact of GALC in human melanoma in a more relevant BRAF-mutated background, we investigated the effect of GALC overexpression on the proteomic landscape of A2058 and A375 human melanoma cells harboring the BRAF(V600E) mutation. The results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrate that significant differences exist in the protein landscape expressed under identical cell culture conditions by A2058 and A375 human melanoma cells, both harboring the same BRAF(V600E)-activating mutation. GALC overexpression resulted in a stronger impact on the proteomic profile of A375 cells when compared to A2058 cells (261 upregulated and 184 downregulated proteins versus 36 and 14 proteins for the two cell types, respectively). Among them, 25 proteins appeared to be upregulated in both A2058-upGALC and A375-upGALC cells, whereas two proteins were significantly downregulated in both GALC-overexpressing cell types. These proteins appear to be involved in melanoma biology, tumor invasion and metastatic dissemination, tumor immune escape, mitochondrial antioxidant activity, endoplasmic reticulum stress responses, autophagy, and/or apoptosis. Notably, analysis of the expression of the corresponding genes in human skin cutaneous melanoma samples (TCGA, Firehose Legacy) using the cBioPortal for Cancer Genomics platform demonstrated a positive correlation between GALC expression and the expression levels of 14 out of the 27 genes investigated, thus supporting the proteomic findings. Overall, these data indicate for the first time that the expression of the lysosomal sphingolipid-metabolizing enzyme GALC may exert a pro-oncogenic impact on the proteomic landscape in BRAF-mutated human melanoma.


Assuntos
Melanoma Experimental , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Galactosilceramidase/genética , Esfingolipídeos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mutação , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902174

RESUMO

Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.


Assuntos
Doenças por Armazenamento dos Lisossomos , Esfingolipidoses , Animais , Humanos , Peixe-Zebra/metabolismo , Esfingolipídeos/metabolismo , Esfingolipidoses/genética , Modelos Biológicos , Mamíferos/metabolismo
4.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188675, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974112

RESUMO

ß-galactosylceramidase (GALC) is a lysosomal enzyme that removes ß-galactose from ß-galactosylceramide, leading to the formation of the oncosuppressor metabolite ceramide. Recent observations have shown that GALC may exert opposite effects on tumor growth by acting as an oncosuppressive or oncogenic enzyme depending on the different experimental approaches, in vitro versus in vivo observations, preclinical versus clinical findings, and tumor type investigated. This review will recapitulate and discuss the contrasting experimental evidence related to the impact of GALC on the biological behavior of cancer and stromal cells and its contribution to tumor progression.


Assuntos
Leucodistrofia de Células Globoides , Neoplasias , Carcinogênese , Galactosilceramidase/metabolismo , Humanos , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Esfingolipídeos
5.
Stem Cell Res ; 42: 101658, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785541

RESUMO

We generated human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a 40 years old female patient homozygous for the mutation c.535 G > A p.G179S on the KCNQ1 gene, causing a severe form of autosomal recessive Long QT Syndrome type 1 (AR-LQT1). The hiPSCs, generated using classical approach of the four retroviruses enconding the reprogramming factors OCT4, SOX2, cMYC and KLF4, display pluripotent stem cell characteristics, and differentiate into cell lineages of all three germ layers: endoderm, mesoderm and ectoderm.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Adulto , Diferenciação Celular , Linhagem Celular , Feminino , Humanos , Fator 4 Semelhante a Kruppel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...